讲座名称:An (F1, F4)-partition of planar graphs with girth 6
讲座人:陈敏 教授
讲座时间:12月9日20:00
讲座地点:腾讯会议直播(ID: 667 972 959 密码:2022)
讲座人介绍:
陈敏,女,1982年6月生,浙江师范大学教授,博士生导师,数学与计算机科学集团副院长,省高校中青年学科带头人,省高校领军人才培养计划“高层次拔尖人才”,中国运筹学会图论组合分会理事、副秘书长,金华市女科技工作者协会秘书长。
主要研究方向为图的染色理论。迄今在J. Combin. Theory Ser. B、European J. Combin.、J. Graph Theory、Discrete Math.、Discrete Appl. Math. 以及中国科学等国内外学术刊物上发表60余篇SCI期刊学术论文。主持国家自然科学基金面上项目2项,主持国家自然科学基金青年基金1项,主持浙江省自然科学基金项目2项,主持留学回国人员科研启动基金1项,现为JOCO期刊的编委。成果先后获省自然科学学术奖一等奖、省科学技术奖二等奖、省首批“担当作为好支书”、省教育系统“事业家庭兼顾型”先进个人、省“最美家庭”、校第二届“砺行”奖教金、校“优秀共产党员”,连续三届获校“我心目中的好老师”、六次获校优秀班主任,入选校首批学术名师计划。至今已指导研究生20多人,指导研究生发表SCI论文20多篇,5人被评为省优秀毕业生、校“校长特别奖”,3人获研究生国家奖学金。
讲座内容:
Let G = (V, E) be a graph. If the vertex set V (G) can be partitioned into two non-empty subsets V1 and V2 such that G[V1] and G[V2] are graphs with maximum degree at most d1 and d2, respectively, then we say that G has a (∆d1, ∆d2)-partition. A similar definition can be given for the notation (Fd1, Fd2)-partition if G[Vi ] is a forest with maximum degree at most di , where i ∈ {1, 2}. The maximum average degree of G is defined to be mad(G) = max{2|E(H)|
|V (H)| : H ⊆ G}. In this talk, we prove that every graph G with mad(G) ≤ 165 admits an
(F1, F4)-partition. As a corollary, every planar graph with girth at least 6 admits an (F1, F4)-partition. This improves a result in [O. V. Borodin, A. V. Kostochka, Defective 2-colorings of sparse graphs, J. Combin. Theory Ser. B 104 (2014) 72–80.] saying that every graph G with mad(G) ≤ 165 admits a (∆1, ∆4)-partition. This is joint work with André Raspaud and Weiqiang Yu.
主办单位:数学与统计集团