讲座名称:Robust nonconforming finite element method for strain gradient elasticity
讲座人:李鸿亮 副教授
讲座时间:6月17日9:00
讲座地点:腾讯会议直播(ID:431 531 003)
讲座人介绍:
李鸿亮,四川师范大学数学集团副教授,2015年于中国科集团数学与系统科学研究院计算数学所获得博士学位,主要研究方向为偏微分方程数值解法、多尺度建模与模拟。先后主持国家自然科学基金青年项目1项,国防科工局项目1项,部级项目1项。2016年至2020年,担任“国防基础科研核基础科学挑战计划”课题负责人。截至目前,在《Numer. Math.》、《J. Comput. Phys.》、《J. Sci. Comput.》、《J. Comput. Math.》等国际国内知名期刊发表论文10余篇。
讲座内容:
We establish a new H2-Korn’s inequality and its discrete analog, which greatly simplify the construction of nonconforming elements for a linear strain gradient elastic model. The Specht triangle (Specht in Int J Numer Methods Eng 28:705–715, 1988) and the NZT tetrahedron (Wang et al. in Numer Math 106:335–347, 2007) are analyzed as two typical representatives for robust nonconforming elements in the sense that the rate of convergence is independent of the small material parameter. We construct the regularized interpolation operators and the enriching operators for both elements, and prove the error estimates under minimal smoothness assumption on the solution. Numerical results for the smooth solution, and the solution with boundary layer are consistent with the corresponding theoretical prediction.
主办单位:数学与统计集团